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Central Elements of Effect Algebras
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Central elements of an effect algebra can be characterized by means of a weak form of
distributivity and a maximality property. We give examples where both conditions are
fulfilled.
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Central elements and the center (the set of all central elements) play an im-
portant role in quantum structures—they represent the “classical part” of a given
model. Considering the axiomatics of quantum structures, it is important to know
the impact of various conditions on the size of the center. In particular, there are
a lot of results of the type that a quantum structure with some properties has to
be a Boolean agebra—see, e.g., Navara and Pták (1989), Müller et al. (1992),
Pulmannová and Majernı́k (1992), Müller (1993), Pulmannová (1993), Pták and
Pulmannová (1994), Tkadlec (1994), Dvurečenskij and Länger (1995), Tkadlec
(1995), and Navara (1997). All the results mentioned above were generalized by
Tkadlec (1997) by introducing two new classes of orthomodular posets. Here we
present a generalization of the latter results in two direction: (1) we consider more
general structures than orthomodular posets, (2) we consider a given element in-
stead of the whole structure.

1. BASIC NOTIONS AND PROPERTIES

Let us summarize some basic notions and properties of effect algebras. For
proofs and details see, e.g., Foulis and Bennett (1994), Greechie et al. (1995).

Definition 1.1. An effect algebra is an algebraic structure (E , 0, 1, ⊕) such that
E is a set, 0 and 1 are different elements of E , and ⊕ is a partial binary operation

1 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, 166 27
Prague, Czech Republic; e-mail: tkadlec@fel.cvut.cz.

1363

0020-7748/04/0600-1363/0 C© 2004 Springer Science+Business Media, Inc.



1364 Tkadlec

on E such that for every a, b, c ∈ E the following conditions hold (the equalities
mean also “if one side exists then the other side exists”):

(1) a ⊕ b = b ⊕ a (commutativity),
(2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity),
(3) for every a ∈ E there is a unique a′ ∈ E such that a ⊕ a′ = 1

(orthosupplement),
(4) a = 0 whenever a ⊕ 1 is defined (zero-unit law).

For simplicity, we use the notion E for an effect algebra. A partial ordering
on an effect algebra E is defined by a ≤ b iff there is a c ∈ E such that b = a ⊕ c;
such an element c is unique (if it exists) and is denoted by b 	 a. 0 (1, resp.) is
the least (the greatest, resp.) element of E with respect to this partial ordering. An
orthogonality relation on E is defined by a ⊥ b iff a ⊕ b exists (i.e., iff a ≤ b′). It
can be shown that a ⊕ 0 = a for every a ∈ E and that a cancellation law is valid:
for every a, b, c ∈ E with a ⊕ b ≤ a ⊕ c we have b ≤ c.

Definition 1.2. An orthoalgebra is an effect algebra E such that for every a ∈ E :

(4′) a = 0 whenever a ⊕ a is defined (consistency).

Assuming conditions (1)–(3) from the definition of an effect algebra, the con-
dition (4′) is stronger than condition (4), hence we can define an orthoalbegra by
conditions (1)–(3) and (4′). Other characterizations of orthoalgebras among effect
algebras: a ∧ a′ = 0 for every a; the orthosupplementation is orthocomplementa-
tion; a ⊕ b is a minimal upper bound for orthogonal a, b.

Definition 1.3. An orthomodular poset is an effect algebra E such that for every
a, b, c ∈ E :

(5) (a ⊕ b) ⊕ c is defined whenever a ⊕ b, b ⊕ c and c ⊕ a are defined
(coherence).

Obviously, if a ⊥ b and a ∨ b exists in an effect algebra, then a ∨ b ≤ a ⊕ b.
The reverse inequality need not be true.

Definition 1.4. An element a of an effect algebra E is principal, if b ⊕ c ≤ a for
every b, c ∈ E such that b, c ≤ a and b ⊥ c.

If a is a principal element, then a ∧ a′ = 0 and the interval [0, a] is an effect
algebra with the greatest element a and the partial operation given by restriction of
⊕ to [0, a]—the orthosupplement operation is given by b 
→ (b ⊕ a′)′. Moreover:

Theorem 1.5. An effect algebra is an orthomodular poset iff every its element is
principal.
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Our interest will be concentrated on central elements.

Definition 1.6. An element a of an effect algebra E is central, if

(1) a and a′ are principal,
(2) for every b ∈ E there are b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′, and b =

b1 ⊕ b2.

The center C(E) of E is the set of all central elements of E .

The center of an effect algebra E is a sub-effect algebra of E and forms a
Boolean algebra. The decomposition property of central elements (condition (2) of
Definition 1.6) can be formulated by the following way: b = (b ∧ a) ⊕
(b ∧ a′).

2. RESULTS

Let us present the main result, which generalizes Theorem 4.2 from Tkadlec
(1997).

Theorem 2.1. Let E be an effect algebra. Then a ∈ E is central iff the following
conditions hold:

(1) a and a′ are principal,
(2) b = 0 whenever b ∈ E with b ∧ a = b ∧ a′ = 0,
(3) [0, a] ∩ [0, b], [0, a′] ∩ [0, b] have maximal elements for every b ∈ E.

Proof: The necessity of all conditions is obvious—the first is condition (1) of
Definition 1.6, the second is a weaker form of condition (2) of Definition 1.6, the
third follows from the fact that for a central element a and for an arbitrary b ∈ E
the infima b ∧ a, b ∧ a′ exist.

Let us prove the sufficiency, i.e., condition (2) of Definition 1.6. Let b ∈ E .
Let us denote by b1 a maximal element of [0, a] ∩ [0, b] and by b2 a maximal
element of [0, a′] ∩ [0, b 	 b1] and consider the element c = (b 	 b1) 	 b2. Let
us take an arbitrary d ≤ c ∧ a. Since d ≤ c ≤ b 	 b1, we obtain that d ⊕ b1 exists
and d ⊕ b1 ≤ b. Since d , b1 ≤ a and a is principal, d ⊕ b1 ≤ a. Since b1 is a
maximal element of [0, a] ∩ [0, b], d ⊕ b1 = b1 and therefore d = 0, i.e., c ∧ a =
0. Analogously, c ∧ a′ = 0 and, according to assumption (2), c = 0. Therefore
b = b1 ⊕ b2 and the condition (2) from Definition 1.6 are proved. �

The following examples show that no condition from Theorem 2.1 can be
omitted.
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Example 2.2.

(1) Let E be the real interval [0, 1] with a ⊕ b = a + b if a + b ≤ 1. Then
the partial ordering is the standard (total) ordering of real numbers and
a′ = 1 − a for every a ∈ E . The condition (1) of Theorem 2.1 is fulfilled
only for a ∈ {0, 1} while the others are fulfilled for every a ∈ E .

(2) Let E be the family of even-element subsets of a 4-element set X , 0 = ∅,
1 = X , and a ⊕ b = a ∪ b if a and b are disjoint. The condition (2) of
Theorem 2.1 is fulfilled only for a ∈ {0, 1} while the others are fulfilled
for every a ∈ E .

(3) Let X1, X2, X3, X4 be pairwise disjoint infinite sets, X be their union,
E consists of X1 ∪ X2, X2 ∪ X3, X3 ∪ X4, X4 ∪ X1, ∅, X , and of all
subsets of X with finite symmetric difference with some of these sets.
Let a ⊕ b = a ∪ b if a and b are disjoint. The condition (3) of Theorem
2.1 is fulfilled only for a finite or cofinite subsets of X while the others
are fulfilled for every a ∈ E .

Due to Theorem 1.5, we can omit condition (1) of Theorem 2.1 for ortho-
modular posets. If we apply the above theorem for every element of a given effect
algebra, we obtain the following corollary:

Corollary 2.3. Let E be an effect algebra such that for every a, b ∈ E the fol-
lowing conditions hold:

(1) a is principal,
(2) b = 0 whenever b ∧ a = b ∧ a′ = 0,
(3) [0, a] ∩ [0, b] has a maximal element.

Then E is a Boolean algebra.

Again, for orthomodular posets we may omit the first condition and obtain
thus exactly the result of Tkadlec (1997).

Properties used in Theorem 2.1 might be derived from other properties. First,
let us introduce some notions.

Definition 2.4. Let E be an effect algebra. A state s on E is a mapping s: E →
[0, 1] such that:

(1) s(1) = 1,
(2) s(a ⊕ b) = s(a) + s(b) whenever a ⊕ b is defined.

A state s is Jauch–Piron if for every a, b ∈ E with s(a) = s(b) = 1 there is
a c ∈ E such that c ≤ a, b and s(c) = 1.
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A set S of states on E is unital, if for every a ∈ E \ {0} there is a state s ∈ S
such that s(a) = 1.

Obviously, for every state s we have s(0) = 0, s(a′) = 1 − s(a) for every
a ∈ E , s(a) ≤ s(b) for a ≤ b. By a two-valued state we mean a state with values
in {0, 1}.

The condition (2) of Theorem 2.1 is a week form of distributivity—it can
be reformulated by the following way: b ∧ (a ∨ a′) = (b ∧ a) ∨ (b ∧ a′) when-
ever b ∧ a = b ∧ a′ = 0. It is a consequence of a large number of various prop-
erties usually stating that we have “sufficiently enough” of “sufficiently good”
states.

Proposition 2.5. Let E be an effect algebra, a ∈ E and at least one of the
following conditions hold:

(1) a is principal and b ⊥ a, a′ for every b ∈ E with b ∧ a = b ∧ a′ = 0.
(2) There is a k ∈ [ 1

2 , 1] and a set S of states on E such that for every
b ∈ E \ {0} with b ∧ a = b ∧ a′ = 0 the following holds:
(a) there is a state s ∈ S such that s(b)k (s(b) > k, resp.),
(b) s(a) + s(b) < 1

2 + k, s(a′) + s(b) < 1
2 + k (s(a) + s(b) ≤ 1

2 + k,
s(a′) + s(b) ≤ 1

2 + k, resp.) whenever s ∈ S with s(b)k (s(b) > k,
resp.).

Then the condition (2) of Theorem 2.1 is fulfilled.

Proof:

(1) Let b ∈ E such that b ∧ a = b ∧ a′ = 0. Then a ⊕ b exists and b ⊥ a′,
i.e., b ≤ a. Since a is principal, a ⊕ b ≤ a = a ⊕ 0 and therefore b = 0.

(2) Let b ∈ E \ {0} such that b ∧ a = b ∧ a′ = 0 and let us seek a contra-
diction. There is an s ∈ S such that s(b) ≥ k (s(b) > k, resp.) and s(a) +
s(b) < 1

2 + k, s(a′) + s(b) < 1
2 + k (≤ in both inequalities, resp.). Adding

these two inequalities and using the equality s(a) + s(a′) = 1 we obtain
s(b) < k (s(b) ≤ k, resp.)—a contradiction. �

Let us remark that the assumption that a is principal in condition (1) of the last
proposition is required in condition (1) of Theorem 2.1. A special case of (2) we
obtain for S be a “unital set of two-valued Jauch–Piron states.” For other concepts
(e.g. for various kinds of subadditive states) see Tkadlec (1997).

The condition (3) of Theorem 2.1 is also a consequence of various properties.

Proposition 2.6. Let E be an effect algebra, a ∈ E and at least one of the
following conditions hold:
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(1) b ∧ a, b ∧ a′ exist for every b ∈ E (special case: E is a lattice),
(2) [0, a], [0, a′] are closed under suprema of orthogonal elements (special

case: E is orthocomplete in the lattice sence) and E is an orthoalgebra.
(3) There is a countable unital set of states on E and every state on E is

Jauch–Piron.

Then the condition (3) of Theorem 2.1 is fulfilled.

Proof: Let b ∈ E , we will prove the existence of a maximal element of [0, a] ∩
[0, b] (for a′ we can proceed analogously).

(1) a ∧ b is the greatest (hence a maximal) element of [0, a] ∩ [0, b].
(2) There is a maximal set O of mutually orthogonal elements from [0, a] ∩

[0, b]. Then c = ∨
O ∈ E is a maximal element of [0, a] ∩ [0, b]. In-

deed, if d ∈ [0, a] ∩ [0, b] with d ≥ c, then e = d 	 c ∈ [0, a] ∩ [0, b]
and e ⊥ c. Due to the maximality of O , e ∈ O and therefore e ⊥ e. Since
E is an orthoalgebra, we obtain e = 0 and d = c, i.e., c is a maximal el-
ement of [0, a] ∩ [0, b].

(3) If [0, a] ∩ [0, b] = {0} then the maximal element of [0, a] ∩ [0, b] is 0.
Let us suppose that [0, a] ∩ [0, b] �= {0} and let us denote by S a countable
unital set of states on E . Then the set Sa,b = {s ∈ S; s(a) = s(b) = 1} is
nonempty and countable. Let s0 be a σ -convex combination (with nonzero
coefficients) of all states in Sa,b. Then s0(a) = s0(b) = 1. Since the state
s0 is Jauch–Piron, there is a c ∈ [0, a] ∩ [0, b] such that s0(c) = 1. It
remains to prove that c is a maximal element of [0, a] ∩ [0, b]. Indeed, if
d ∈ [0, a] ∩ [0, b] with d ≥ c then e = d 	 c ∈ [0, a] ∩ [0, b] and e ⊥ c.
Hence s0(e) = 0 and therefore there is no state s ∈ S such that s(e) = 1.
Due to the unitality of S, e = 0 and therefore d = c. �

The condition (3) of the above Proposition is weaker than the condition “the
set of states on E is a countable unital set of Jauch–Piron states”:

Example 2.7. Let E be the Boolean algebra of open subsets of the real interval
[0, 1]. Every state on E is Jauch–Piron, the set of states is uncountable (for every
x ∈ [0, 1] there is a two-valued stated carried by x : sx (a) = 1 iff x ∈ a) but there
is a countable unital set of states (carried by rational numbers).

ACKNOWLEDGMENTS

The author gratefully acknowledges the support of Grant No. 201/00/0331 of
the Grant Agency of the Czech Republic and of Project No. MSM 210000010 of
the Ministry of Education of the Czech Republic.



Central Elements of Effect Algebras 1369

REFERENCES
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